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_ABSTRACT. The stability of the Blasius flow over a diaphragm-type
surface, the physical characteristics of which are constant along
the length, is examined.

Attempts have been made to provide a theoretical explanation of the effect 152‘
Eoundary deformation has on ihe position of the point in the boundary layer at
which stability is lost. These attempts are associated with Kramer's successful
experiments [1, 2] in sheathing models with flexible coatings. A. I. Korotkin [3]
examined the stability of a plane laminar boundary layer over an elastic surface
on the assumption that there is a linear connection between pressure disturbance
and normal surface deformation. Benjamin [4] and Landahl [5] investigated the
stability of a laminar boundary layer over a diaphragm-type surface on the assump-
tion that the physical characteristics of the surface depend on the wavelength ofl
the disturbing flow.

The stability of the Blasius flow over a diaphragm-type surface, the physical
characteristics of vhich are constant along the length, will be examined in what
followus, '

We will take it that when there are no disturbances the surface of the plate
coincides with the half-plane x 2 0, y = 0 (Figure 1). Let us suppose that.-cer-
tain disturbances have taken place in the flow at a predetermined moment. Let us
investigate the stébility of the flow with respect to these disturbances.
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Let U, V (V € U) be the components of the velocity of the Blasius flow along
the % and y axes, respectively, p be the pressure, v be the kinematic modulus of
viscosity, and p be the fluid density. We will take it that the velocities of
the disturbances, u', v, and the pressure disturbance; p°’, are small in the
sense that terms tpat are quadratic with respect to the disturbances can be
ignored. Let us introduce the stream function, V', for the disturbing flow
in the form

P = ¢ (y) exp [i a(z—ect)] (1)
the while assuming that the real part of equation (1) is taken. The wave number,
&, is a real magniiude, linked with the yavelength of the disturbing flow by the

relationship @ = 2n/A. The phase velocity ¢ = c. + ic, is a complex magnitude.

i .
The sign of the imaginary part, s tells whether the disturbance will increase
(ci > 0), or be damped (ci < 0). Dimensionless magnitudes are used in equation
(1), as well as in what follows. The velocity U, at the outer limit of the

boundary layer is taken as the.velocity scale, and the thickness of the boundary ’

layer L Sve
| s=0)/ 3

is taken as the length scale.

The neutral curve ¢, = 0, geparating the region of rising disturbances from
the region of damping disturbances, is of particular interest. The Reynolds
number for loss of‘stability is determined by the shape.éf this curve. The
neutral stability curve is constructed from the solution of the Orr-Sommerfield /53

equatlon for the amplitude © of the strean functlon for a dlsturblng flow L6]
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The boundary conditions for equation (2) express the. conditions for disturb-
ance . damping at infinity and the adhesion conditions. The conditions at infinity

are in the form [6]

<P’+a<p‘-é0, 1q>"(<-oo' o (3)



The adhesion conditions express the equality of the velccity of a surface

element and a 1liquid particle adjacent to the surface (Figure 1)
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Let us put
E'(gz, 2) == Ee* (x—ct),-' oq (w, t) = nle'ia (a=eD -

Substituting the equality at (5) in (&), expanding the right sides of the
latter in a Taylor series, and taking the smallness of the deformations, and the
velocity V, into consideration, we obtain

[
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It will be convenient, in subsequent computations, to introduce the nofmal,
Yo, andlthe tangential, Xo, yielding of theAflow with respect to the.traveling
wave. The normal (tangential) yielding is determined with sign correctness by the
ratio of the normal ftangential) velocity to the pressure disturbance,
p' = p, exp [ir (x - ct)], that is
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vhich can be written with first order of infinitesimals correctness as -

(7)
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: The amplitude Py of the pressure disturbance can be found from the linearized
equations for the motion of a viscous fluid in projections on the x and y axes,
respectively

L (g7 (0) — o’ O] + o9’ 0) + U’ @) ) 8

= R



or

les]

Py = — § [T% (9" — a?) -—oc?(U—c) (p] dy (9)

The identity of equations (8) and (9) follows from equation (2).

Introduced in similar fashion are the tangential, Y > and normal, Y

1 11’
yleldings of a deformable surface with respect to the traveling wave
4o Lo
le'—':'_p'a‘—a}‘: ' Yll"" ‘P' at

and can be written with first order of infinitesimals correctness in the form

0 dack > daem,
Yia=— pnot n="p (10)

The equality

'Yo =Yy, Xp= Yo (11)

yields the boundary conditions on the deformable surface.

The computations show that the tangential yielding has little effect on the

position of the point at which stability is lost, and it can be taken as equal

to zero.

Let us, in order to determine the normal yielding, Yll
on ﬂl, consider the motion of a diaphragm element (Figure 2)..
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Figure 2

Here m, is the mass of a unit of diaphragm area, T, is the surface tension
occurring per unit width of the'diaphragm, and k, is the stiffness factor. The
asterisks denote dimensional magnitudes.

Let us find the ﬂl/bl ratio from equation (12), with equation (5) taken into

consideration. When this ratio is substituted in equation (10) we obtain
. ] -
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. 1= = FWP9) 0y = o
. ms3 (co? — ¢* — cidfma) X
Lo . (13)
" where
’ 2 T k
co? —Com‘+‘ a'a ¥ Com == 7=y (002:.;;‘.._]5 3 33

P

An approx1mate solutlon of equatlon (2) can ve given in the form

‘P":‘p."'A% (14)

~In this equation & is the " nonviscous " solution, satisfying the equation
(U =) (@ —a20) — U" B =0
IR S (15)
and ¢3 is the approximate 'viscous" solutlon of equation (2) satisfying
equation [6]
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Here Yc is the value of y for which U =

The solutions’'of & and P5 satisfy the boundary conditions at (3). The
boundary conditions at (11), and the condition of nontriviality of the solution
Jead to the characteriétic equation linking the magnitudes ¢,¢,R with the para-
meters of the deformable surface. Before writing this equation, let us simplify
the expression for the pressure amplitude, Pys contained in (11), igﬁoring the



small magnitude terms. In accordance with equations (8) and (1%4), we can write

pm Q=) 08 O f‘” +eg’ <0>+U“<0><p<0> an

The first term in the right side of equation (17) can be ignored because /55
the change in the nonviscous solution is slow. This term is exactly equal to
zero in the case of the Blasius flow, as follows from equation (15) after
differentiation with respect to y. The sum of the third and fourth terms in
the right side of equation (17) s in accordance with equations (6) and (10),

equals c¢Y and it too can be ignored. In order to make further simplifi-

Py
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cations in equation (17), let us find cp3'” (0) from equation (16) by ternm

integration with respect to y
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. Equation (18) yieldsl@B"' (O)l>[¢3' (Oﬂ. Therefore, taking the fact that
U~ U ), ¥, '~ ¢, and using equations (7) and (11), our final finding is

o o
., PO U@ (0) + @ ©) (19)

An identical expression can also be obtained by the transformation of

-1/3

cited above confirm Landahl's assertion [5] that a linearized equation of motion

equation (9), and it will be correct to within the R terms. The arguments
in the projection on the y axis yields a more accurate expression for pressure
disturbance than does a linearized equation of motion in the projection on the

Using the expreséion obtained for Py» We can write the characteristic
equation in the form

(Yn o’ (0)‘1? (0) + <@ (O)] — 1 (0)} (o (O)cps ©) + cos" . (0)] =
‘ = —iags O) [U" Q)2 O) @ @ - - . (20)

Let us simplify equationv(zo). Let us introduce the following notationms:
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Here F(z) is a Tietjens function, tables of which are contained in {6].
Equation (20) when expressed in terms of the notations in (21) will, after

uncomplicated transformations, appear in the form
. . U ({0)Yu
F¥g)y=u+ v+ —5— (22)
The function &, in terms of which we can express.u + iv, is determined.by
the solution of equation (15). Presenting this solution in the form of a series
in terms of powers of ag, and limiting ourselves to the principal terms, we
obtain [6] | | ‘
u+w=dﬂwwzﬁzﬁ+ﬂ,~m=ﬁﬁw+K@

- q U/loe U, xi

o1 . (23)
o dy _ .
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Let us substitute the value for Y.. from equation (13) in equation (22),

11
-and let us isolate the real and the imaginary parts. We find that

o Ft=u —_ mU (0) (cofe —c) .
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vhere
Fr* and Fi* are the real and the imaginary parts of the function F*(z)
respectively. |

Let us note that the link between the pressure and the deformation sometimes
-is given in the form [3] '

f-

== p ke

' that is, in accordance with equation (10), it is taken that
Yy = iccKe®

.and not comnsidered as a concrete -form of a deformable surface. With equation (13)
in mind, it is not difficult to see that for the model of a deformable surface
- adopted here

K; = {lma? (¢, — )12 + ‘
+ A2ty ,

deat
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‘that is, Ki and © depend on the physical parameters of the disturbance wave and

7



on the parameters of the deformable surface.
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Figure 3
Based on the foregoing, the construction of the neutral stability curve for
fixed parameters of a deformable sﬁrface can be carried out in the following
sequence. Find Fr* and Fi* in'the_tables for each z. Solve equations (24) and
(21) for @ and ¢. Compute the corresponding R number by solving the corresponding
equation at (21). Corresponding to the R number for loss of stability are

z = 3,21, Fi* = 0.58, and Fr* = 1.49,

Figure 3 shows the results of the R number computations for loss of stability.

Curve 1 depicts the dependence of B = R/R1 on the parameter for the mass

v _ - 10™2 =
Xm = km/klnl when C0 = 0.75, kw = b.56-1077, 4 = 0.1, k

L
= 1,810 . The
a ’ a

1

.number corresponds to the R number when k = k

" n1? differing little from the R

number for a rigid surface. Curve 2 is for the dependenceof B on Ky = k u/kwl

when o, = 0. 4%, e, = 0.75, 4 = 0.1, ku& = 7.4310‘kf It should be pointed out

m

that the éelection of the values for ¢, and d in these computations was more
m
or less arbitrary.
Submitted 13 May 1969.
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